翻訳と辞書
Words near each other
・ Alternative media in South Africa
・ Alternative Media Project
・ Alternative medicine
・ Alternative medicine degrees
・ Alternative Medicine Research Institute
・ Alternative metal
・ Alternative minimum tax
・ Alternative Miss Ireland
・ Alternative model
・ Alternative Mortgage Transaction Parity Act of 1982
・ Alternative movement
・ Alternative names for chronic fatigue syndrome
・ Alternating permutation
・ Alternating planar algebra
・ Alternating polynomial
Alternating series
・ Alternating series test
・ Alternating sign matrix
・ Alternating step generator
・ Alternating tree automata
・ Alternating Turing machine
・ Alternating-time Temporal Logic
・ Alternation
・ Alternation (formal language theory)
・ Alternation (geometry)
・ Alternation (linguistics)
・ Alternation (solitaire)
・ Alternation Bloc for Renewal, Integration, and African Cooperation
・ Alternation of generations
・ Alternativ stad


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Alternating series : ウィキペディア英語版
Alternating series

In mathematics, an alternating series is an infinite series of the form
:\sum_^\infty (-1)^n\,a_n or \sum_^\infty (-1)^\,a_n
with ''an'' > 0 for all ''n''. The signs of the general terms alternate between positive and negative. Like any series, an alternating series converges if and only if the associated sequence of partial sums converges.
==Examples==
The geometric series 1/2 %E2%88%92 1/4 %2B 1/8 %E2%88%92 1/16 %2B %E2%8B%AF sums to 1/3.
The alternating harmonic series has a finite sum but the harmonic series does not.
The Mercator series provides an analytic expression of the natural logarithm:
:
\sum_^\infty \frac x^n \;=\; \ln (1+x).
The functions sine and cosine used in trigonometry can be defined as alternating series in calculus even though they are introduced in elementary algebra as the ratio of sides of a right triangle. In fact,
:\sin x = \sum_^\infty (-1)^n \frac, and
:\cos x = \sum_^\infty (-1)^n \frac .
When the alternating factor (–1)n is removed from these series one obtains the hyperbolic functions sinh and cosh used in calculus.
For integer or positive index α the Bessel function of the first kind may be defined with the alternating series
: J_\alpha(x) = \sum_^\infty \frac \right)}^   where Γ(''z'') is the gamma function.
If ''s'' is a complex number, the Dirichlet eta function is formed as an alternating series
:\eta(s) = \sum_^ = \frac - \frac + \frac - \frac + \cdots
that is used in analytic number theory.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Alternating series」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.